

The FAMU-FSU College of Engineering

FSU Panama City, Panama City FL 32405

Electrical and Mechanical Engineering Undergraduate Department

TO: Senior Design Professors for EML 4552/EEL 4915C

FROM: RoboBoat Team

Subject: Test Readiness Review

Dear Dr. Damion Dunlap and Dr. Geoffery Brooks,

 Contained in this document is the current testing plan and readiness review as it stands. As our

project draws to a close, our team plans on implementing several testing procedures in order to ensure that

the project will be a viable system when finished. As you read the document below, please know we are

extremely appreciative for your time.

Sincerely,

Brandon Bascetta

Courtney Cumberland

Mark Hartzog

Madison Penney

Peter Oakes

Toni Weaver

FSU Panama City Mechanical and Electrical Engineering Seniors

EEL 4911C/EML 4552

 Test Readiness Review

RoboBoat Development Team

FSU Panama City Mechanical & Electrical Engineering Seniors:

Brandon Bascetta

Courtney Cumberland

Mark Hartzog

Madison Penney

Peter Oakes

Toni Weaver

Professors: Dr. Damion Dunlap & Dr. Geoffrey Brooks

10 July 2020

EEL 4911C/EML 4552

 Test Readiness Review

TABLE OF CONTENTS

I. Summary of TRR Report 1

A. Advisor Contact Information 1

B. RoboBoat Development Test 1

C. Project Summary 1

i. Software Development 2

ii. Hardware Development 2

iii.Boat Design and Manufacturing 2

D. Project Motivation 2

E. RoboBoat Development Team Goals 3

F. RoboBoat Project Stages 3

i. Spring 2020 3

ii. Summer 2020 4

G. Proposed Testing Plan 4

II. Test Readiness Plan 8

A. Subsystem Testing 8

B. Testing Resources 9

C. Testing Risks 9

III. Conclusion 10

Appendix A-1

1 | P a g e

I. Summary of TRR Report
A. Advisor Contact Information:

ECE Senior Design Coordinator:

Dr. Geoffrey Brooks

(850) 770-2247

gbrooks@pc.fsu.edu

MEE Senior Design Coordinator:

 Dr. Damion Dunlap

 (850) 770-2204

 ddunlap@fsu.edu

RoboBoat Technical Advisor:

 Dr. Joshua Weaver

 jnweaver@fsu.edu

B. RoboBoat - Development Team

 Mechanical Design Lead - Brandon Bascetta

 Manufacturing Lead - Courtney Cumberland

Software Lead - Mark Hartzog

 Software/Hardware Integrator - Peter Oakes

 Hardware Developer - Madison Penney

 Systems Lead - Toni Weaver

C. Project Summary

The overall objective of this project is to develop and manufacture a working boat complete with

sensors and basic software that is capable of competing in the RoboBoat competition. This goal will be

achieved by completing three different subprojects. These include software development, hardware

development, boat design and manufacturing. Figure 1, shown below, displays the functional

decomposition of the project. This project will focus primarily on the left three branches of the image.

mailto:gbrooks@pc.fsu.edu
mailto:ddunlap@fsu.edu
mailto:jnweaver@fsu.edu

2 | P a g e

Figure 1. Functional Decomposition of the project.

 i. Software Development

 The software team is responsible for bringing life to the hardware components in order to make

them serve a functional purpose. Using the Robot Operating System (ROS), as our middleware platform,

we can tap into pre-existing algorithms that are often tailor made for our sensors by the sensor’s creators

themselves. Using these algorithms and the tools in the lab we can protype our own software, written by

us, to create a functional system with each piece of software working in tandem to create a large and unique

data set making the vehicle mobile.

 ii. Hardware Development

The hardware design will essentially take each respective sensor and will wire and place it in the

most optimal position of the vehicle. Because of the nature of some of the sensors, it is imperative that they

are calibrated and placed in strategic locations in order to be implemented properly so that they may

generate helpful data.

 iii. Boat Design and Manufacturing

Utilizing the engineering design methods to meet the customer’s needs, a larger, more stable boat

was designed for this year’s competition. Therefore, a new boat will be constructed. A fiberglass and epoxy

resin composite was chosen as the primary material thus, the hand lay-up method of construction will be

implemented to manufacture the hull of the boat as well as the lids. The final CAD design of the boat was

created in Solidworks. The overall size and weight of the vessel is constrained by the RoboBoat rules. This

boat will have a length of 50”, width of 30” and height of 30” and an estimated weight of approximately

22.67 lbs excluding the electrical components.

D. Project Motivation

The RoboBoat competition is an international robotics competition that focuses on allowing young

engineering students to create solutions for some of the most difficult and challenging electrical, and

computer engineering challenges. The tasks themselves include using custom algorithms to allow the boat

to autonomously solve puzzles. For example, some of the tasks include navigating a channel of buoys,

finding a path through a field of obstacles, or performing a speed test to exhibit the vehicle’s power. The

EEL 4911C/EML 4552

 Test Readiness Review

A-3 | P a g e

specific duties of the software team are to take the powered sensors and setup their respective firmware,

and drivers, in addition to wiring them and using their data sets to produce logic solving with algorithms.

These algorithms, as mentioned previously, will allow the tasks required by the competition to be solved

autonomously. Using the experiences from last year, the team will optimize the algorithms to enhance their

performance which will allow the vehicle to exhibit better run times. Algorithms, data processing and

publishing will be implemented primarily through the ROS environment.

E. RoboBoat Development Team Goals:

- Properly setup the drivers and various sensors and modules on the vehicle

- Create a functional data set generated by the various sensors

- Send the generated data to ROS (Robotic Operating System)

- Create data connections in ROS so the sensors can communicate to one another

- Import the data to custom executables and scripts to create logic solutions and data manipulation

- Create algorithms consisting of the modified data set

- Give the motors commands based upon the logic and algorithms being implemented

F. RoboBoat Project Stages

i. Spring 2020 - Previous Work

a. Setup and integrate hardware using the PE’s power box. This included driver

installation, manufacturer packages and firmware.

b. After the first step was complete, the sensors data generation methods were

calibrated, and the heat displaced by them regulated by placing them in strategic

positions.

c. The IMU was placed in an area that caused the least magnetic interference on the

test boat.

d. The LiDAR was placed on the top of the test boat to maximize the visible areas

and ranges.

e. The camera was placed in the front of the test boat to maximize obstacles

detection.

f. After these steps were completed, the data was further calibrated and optimized

and then sent into ROS once more.

g. The boat hull design was finalized in CAD.

h. The boat size was finalized at 30” X 50” x 25”.

i. The boat hull mold was finished using 1” and ½” foam, spray foam, modeling

clay and packing tape.

j. A modular fin design was created to attach the thrusters to and mount on the

bottom of the pontoons.

k. Software was developed to drive the boat using motor mixing.

l. Software was developed to allow the boat to be driven using the RC controller.

EEL 4911C/EML 4552

 Test Readiness Review

A-4 | P a g e

ii. Summer 2020 - Current Work

m. The power system will be tested to ensure all voltages are outputting correctly.

n. Each necessary sensor will be connected to the power system.

o. Each sensor that is used will generate data.

p. The data collected in the first stage will be imported into ROS executable

(nodes).

q. The LiDAR (Light Detection and Ranging sensor) and IMU (Inertial

Measurement Unit) sensors will be tested and integrated into the ROS

environment.

r. Code will be created to complete the mandatory navigation channel task.

s. Sensor data will be combined with navigation algorithms to allow the boat to

perform basic obstacle avoidance.

t. The boat hull will be manufactured using hand laid fiberglass.

u. Sensor mounts will be created using CAD and manufactured using rapid

prototyping.

v. The boat software, sensors and hull will be tested in water.

G. Proposed Testing Plan

Below is a tabulated list of the testable requirements that the team is planning to achieve during the

proposed test.

Requirement Testing Method What is Success? Passed (Y/N)

Hull

Hull Floats Place completed hull in a

swimming pool.

The hull does not sink, it

floats.

Hull Carries 15 lbs While in the swimming pool,

dive weights will be added

incrementally until 15 lbs is

reached (dive weights are 3 lbs

each).

The hull will carry 15 lbs

with the pontoons only be

submerged less than 4

inches.

Hull weighs <25 lbs Place hull on scale and read

weight.

Weight is < 25 lbs.

Hull doesn’t leak Place hull in pool carrying 15 lbs

for a minimum of 30 minutes.

Hull has no water in the

interior.

Minimal Deflection Place 9 lbs on the center section

and measure deflection with a

ruler.

The measured deflection

will be less than ⅛”.

EEL 4911C/EML 4552

 Test Readiness Review

A-5 | P a g e

Hardware/Wiring (Components Not Connected)

Power output for the

Ouster OS1-16 LiDAR

(not connected)

Using a multimeter, measure the

voltage output from the power

source to the Ouster OS1-16.

The voltage is within the

range of 22-26 V,

optimally at 24 V.

Power output for the two

ESCs (not connected)

Using a multimeter, measure the

voltage output from the power

source to the two ESCs.

The voltage, for each

ESC, is within the range

of 7-26 V, optimally at 16

V.

Power output for the kill

switch Arduino Mega (not

connected)

Using a multimeter, measure the

voltage output from the power

source to the kill switch Arduino

Mega.

The voltage is within the

range of 7-12 V,

optimally at 9 V.

Power output for the PID

Arduino Mega (not

connected)

Using a multimeter, measure the

voltage output from the power

source to the PID Arduino Mega

(from the Simply NUC).

The voltage is 5 V.

Power output for the USB

Hub (not connected)

Using a multimeter, measure the

voltage output from the power

source to the USB Hub.

The voltage is within the

range of 5-12 V.

Power output for the

NETGEAR N900

Wireless Router (not

connected)

Using a multimeter, measure the

voltage output from the power

source to the NETGEAR N900

Wireless Router.

The voltage is within the

range of 12-19 V. Should

be closer to 19 V due to

how the power source

was made.

Power output for the

Jetson Xavier (not

connected)

Using a multimeter, measure the

voltage output from the power

source to the Jetson Xavier.

The voltage is within the

range of 9-20 V.

Power output for the

Simply NUC (not

connected)

Using a multimeter, measure the

voltage output from the power

source to the Simply NUC.

The voltage is within the

range of 12-19 V.

Hardware/Wiring (Components Connected and ON)

Power output connection

to the Ouster OS1-16

LiDAR (connected)

Using a multimeter, measure the

voltage output and current draw

to the Ouster OS1-16. After

measuring the voltage, divide the

maximum allowed power by this

measured voltage to calculate the

maximum allowed current.

The voltage is within the

range of 22-26 V,

optimally at 24 V. The

power is within the range

of 14-20 W (peak 22 W

at startup).

EEL 4911C/EML 4552

 Test Readiness Review

A-6 | P a g e

Power output connection

to the two ESCs

(connected)

Using a multimeter, measure the

voltage output and current draw

to the two ESCs.

The voltage, for each

ESC, is within the range

of 7-26 V, optimally at 16

V. The max current

(constant), for each ESC,

is 30 A.

Power output connection

to the kill switch Arduino

Mega (connected)

Using a multimeter, measure the

voltage output and current draw

to the kill switch Arduino Mega.

The voltage is within the

range of 7-12 V,

optimally at 9 V.

Power output for the PID

Arduino Mega

(connected)

Using a multimeter, measure the

voltage output and current draw

to the PID Arduino Mega (from

the Simply NUC).

The voltage is 5 V.

Power output connection

to the USB Hub

(connected)

Using a multimeter, measure the

voltage output and current draw

to the USB Hub.

The voltage is within the

range of 5-12 V. The

current does not exceed 4

A.

Power output connection

to the NETGEAR N900

Wireless Router

(connected)

Using a multimeter, measure the

voltage output and current draw

to the NETGEAR N900 Wireless

Router.

The voltage is within the

range of 12-19 V, will

likely be closer to 19 V.

The current does not

exceed 2.5 A.

Power output connection

to the Jetson Xavier

(connected)

Using a multimeter, measure the

voltage output to the Jetson

Xavier.

The voltage is within the

range of 9-20 V.

Power output connection

to the Simply NUC

(connected)

Using a multimeter, measure the

voltage output and current draw

to the Simply NUC.

The voltage is within the

range of 12-19 V. The

current must not exceed 3

A

Power output connection

to the Ouster OS1-16

LiDAR (connected)

The LiDAR will be turned on

and observed for 3 minutes.

The LiDAR runs

smoothly without any

brownouts, shutting off,

malfunctioning, or

overheating.

Power output connection

to the two ESCs

(connected)

The two ESCs will be turned on

and observed for 3 minutes.

The two ESCs run

smoothly without any

brownouts, shutting off,

malfunctioning, or

overheating.

Power output connection

to the kill switch Arduino

Mega (connected)

The kill switch Arduino Mega

will be turned on and observed

for 3 minutes.

The kill switch Arduino

Mega runs smoothly

without any brownouts,

shutting off,

malfunctioning, or

overheating.

EEL 4911C/EML 4552

 Test Readiness Review

A-7 | P a g e

Power output connection

to the PID Arduino Mega

(connected)

The PID Arduino Mega will be

turned on and observed for 3

minutes.

The PID Arduino Mega

runs smoothly without

any brownouts, shutting

off, malfunctioning, or

overheating.

Power output connection

to the NETGEAR N900

Wireless Router

(connected)

The NETGEAR N900 will be

turned on and observed for 3

minutes.

The NETGEAR N900

runs smoothly without

any brownouts, shutting

off, malfunctioning, or

overheating.

Power output connection

to the Jetson Xavier

(connected)

The Jetson Xavier will be turned

on and observed for 3 minutes.

The Jetson Xavier runs

smoothly without any

brownouts, shutting off,

malfunctioning, or

overheating.

Power output connection

to the Simply NUC

(connected)

The Simply NUC will be turned

on and observed for 3 minutes.

The Simply NUC runs

smoothly without any

brownouts, shutting off,

malfunctioning, or

overheating.

ESCs and Thrusters Run the thrusters, which are

connected to the ESCs, to max

power. Measure the voltage and

the current.

The voltage does not

exceed 26 V, and the

current does not exceed

30 amps.

Turnigy High Capacity

10000mAh 4S LiPo

Batteries

During testing, check the voltage

output from the batteries.

The voltage range is

maintained at 14.8-16.3

V.

Sensor Design

Sensor mounts articulate Sensors will be placed on the

mount and the angle will be

adjusted by raising and lowering

the mount.

Mount is able to adjust to

different angles.

Sensor mount will be

adaptable

Mounts created will be modular

to fit onto two 80/20 rails.

Mount will fit on the

80/20 rail showing that

the sizing is correct and

other mounts can be

made using these sizings.

Mounts are easily

replaceable

The mounts will be 3D printed

and spares will be made.

Print can be made on

most 3D printer beds with

common filament (PLA

or PETG).

EEL 4911C/EML 4552

 Test Readiness Review

A-8 | P a g e

Software

Boat detects obstacles Obstacles will be introduced in a

controlled manner and the data

will be logged.

Software accurately and

repeatedly identifies

obstacles.

PID controller is capable

of creating smooth

continuous motion.

System will be driven using PID

controller.

System moves in a

smooth and continuous

manner.

Boat Localized System will be traveled around a

specific path several times and

the data logged.

The data points gathered

at each point will agree

with each other (within a

10% margin of error).

Basic Waypoint

Navigation Completed

System will be tasked with a

waypoint within ROS.

System arrives at the

waypoint within a

reasonable amount of

time.

These complied requirements will serve as a checklist for everything needed to stay efficient, productive

and successful during the initial test of the vehicle.

II. Test Readiness Plan

This testing serves to allow the team to render experimental data to determine how the vehicle

behaves and operates in the water. The data needed from the testing includes information regarding the

buoyancy of the vessel, the stability of the vehicle in water, the effectiveness of the control system and the

remote control commands, the stability of network connection from the vehicle to the computer, the

resolution and quality of the sensor data in the physical environment and the software produced vehicle

commands. These tests will confirm many of the project goals and milestones that date back to the onset of

this semester. These milestones include a functional hull, working thrusters using a control system and

remote control, functional integrated hardware and software tasking for the physical system.

A. Subsystem Testing

The testing plan will be concentrated on three different areas, boat hull performance, hardware

and power correctness and software ability. These three areas each have a set of subsystem testing

requirements.

EEL 4911C/EML 4552

 Test Readiness Review

A-9 | P a g e

 To begin, our team will be testing the manufactured boat hull. These tests will ensure that the hull

will remain positively buoyant and have a stable moment of inertia. This will be done by performing test

in the following areas:

● Hull ability to remain positively buoyant with ~15 pounds while not leaking after 30 minutes.

● Hull deflection remains under ⅛” in the center section.

● Hull weighs less than 25 pounds

 The next stage of testing will concentrate on the electrical/hardware subsystem of the project.

This stage will focus on ensuring that the electrical components of the system are maintained with the

correct voltage and power requirements and the mounting of the hardware itself. This stage will also

ensure that the power of the system will be maintained in a steady way and the hardware mounts will be

sufficient. This stage will be focused on the following specific areas:

● Testing the outputs and connections for all electrical and hardware components.

● Testing the wiring of each component to ensure stable and accurate connections.

● Testing the adjustability of the sensor mounts.

● Testing the modularity of the mounts.

● Testing the future proof of the mounts.

 The final stage of the testing phases will focus on the software programming of the project. This

stage will focus on the affectability of the software to perform the prescribed duties of the project.

● The boat is able to localize in its environment.

● The boat is capable of obtaining basic waypoint navigation.

B. Testing Resources

The resources needed to conduct the test include two persons to manage the vehicle while it is

floating in the water in the case that there is a situation where the team loses control of the vessel, the boat

takes on water, capsizes or likewise failures. In addition to physical aid, the team will also be prepared with

the supporting documentation of the sensors and a wiring diagram.

C. Testing Risks

As with any project, there are certain risks associated with any testing plan. These risks must be

mitigated in order for the testing of the project to properly take place. For each risk associated with the

testing plan, an acceptable replacement has been made.

The first, and most obvious risk involves the availability of a finished boat hull. This project

covers several different areas with the boat hull acting as the shell to hold all the components of the

project. However, if the boat hull for the project is not completed in time, a previous testing boat will be

used in its place. This boat is known to be sound and positively buoyant.

EEL 4911C/EML 4552

 Test Readiness Review

A-10 | P a g e

Even if a finished hull is produced in time for testing, the risk for testing the hull is that it will

sink, therefore, the testing should be done in the shallow end of a swimming pool rather than open water

and a rescue swimmer should be on hand to salvage the hull.

 The project requires a nerve system of wired components, which must be powered using several

lipo batteries. One of the original goals of the project was to create a smart power box system to aid with

the powering of components. If the power box for the project cannot be completed on time, however, the

boat will be wired up without using it. Previous testing has been completed using a powered layout that

did not contain a smart power box.

III. Conclusion

A comprehensive and well-defined testing plan is necessary in any major project. This project is a

collaborative effort between manufacturing, hardware and software teams. With the current testing plan

presented in this paper, the project goal of creating a working boat capable of waypoint navigation and

basic entry level autonomy for the competition.

A-1 | P a g e

Appendix

The PID Node Executable

/**

 * Mark Hartzog <markthartzog@gmail.com> *

 **/

#include "ros/ros.h"

#include "geometry_msgs/Twist.h"

#include "controller/Drive.h"

#include "stdio.h"

#include "pid.h"

// Define Global Variables

float linear_vel;

float angular_vel;

float process_var_x = 0.0;

float process_var_z = 0.0;

float previous_error_x = 0.0;

float previous_error_z = 0.0;

// Define callback to unfiltered cmd_vel

void cmdvelCallback(const geometry_msgs::Twist vel){

// Set the x and z equal to data published by an unfiltered cmd_vel

linear_vel = vel.linear.x;

angular_vel = vel.angular.z;

}

int main(int argc, char **argv) {

// Initialize ROS node

 ros::init(argc, argv, "pid");

 ros::NodeHandle nh;

// Subsrcribe to unfiltered cmd_vel

 ros::Subscriber sub = nh.subscribe("/cmd_vel", 1, cmdvelCallback);

EEL 4911C/EML 4552

 Test Readiness Review

A-2 | P a g e

// Define publisher for filtered cmd_vel

 ros::Publisher controlled = nh.advertise<controller::Drive>("/controlled_velocities", 1);

// Define a loop rate to prevent overflow of data to the thread

 ros::Rate loop_rate(25);

// Define a handler for the PID class

 PID pid;

 // Define the PID gains and feed them into the Class

 // In Order: Kd, Ki, Kd, dt

 float pgain_x = 0.025;

 float igain_x = 0.0028;

 float dgain_x = 0.0066;

 float dt_x = 0.052;

 float max_x = 2.0;

 float min_x = -2.0;

 // Define the PID gains and feed them into the Class

 // In Order: Kd, Ki, Kd, dt

 float pgain_z = 0.025;

 float igain_z = 0.0033;

 float dgain_z = 0.0062;

 float dt_z = 0.052;

 float max_z = 1.0;

 float min_z = -1.0;

 // Define an object Twist

 geometry_msgs::Twist vel;

 // Define an object Twist

 controller::Drive drive;

 // Take in the X the goals

 pid.valueslinear(pgain_x, igain_x, dgain_x, dt_x, max_x, min_x);

 // Take in the Z the goals

 pid.valuesangular(pgain_z, igain_z, dgain_z, dt_z, max_z, min_z);

 // Define the increment variables

 float increment_x = 0.0;

EEL 4911C/EML 4552

 Test Readiness Review

A-3 | P a g e

 float increment_z = 0.0;

 ROS_INFO("The PID controller is on...");

while (ros::ok()) {

 // Checks the linear input to create limiter

 if (linear_vel > max_x){

 ROS_WARN("\nThe incoming linear cmd_vel exceeds limits. Setpoint being set to ([%f]):",

max_x);

 linear_vel = max_x;

 } else if (linear_vel < min_x){

 linear_vel = min_x;

 }

 // Checks the angular input to create limiter

 if (angular_vel > max_z){

 ROS_WARN("\nThe incoming angular cmd_vel exceeds limits. Setpoint being set to ([%f]):", min_x);

 angular_vel = max_z;

 } else if (angular_vel < min_z){

 angular_vel = min_z;

 }

 // Call the control function of the linear x

 increment_x = pid.controllinear(linear_vel, process_var_x, previous_error_x);

 // Call the control function of the angular z

 increment_z = pid.controlangular(angular_vel, process_var_z, previous_error_z);

 // Feed in previous error

 previous_error_x = linear_vel - process_var_x;

 previous_error_z = angular_vel - process_var_z;

 // Add new increment contribution to the previous process variable

 process_var_x += increment_x;

 process_var_z += increment_z;

 // Set the velocities equal to the publisher data

 drive.forward = process_var_x;

 drive.turn = process_var_z;

 // Publish

 controlled.publish(drive);

EEL 4911C/EML 4552

 Test Readiness Review

A-4 | P a g e

 // Spin and sleep

 ros::spinOnce();

 loop_rate.sleep();

}

 return 0;

}

The PID Header File

/*

Mark Hartzog <markthartzog@gmail.com>

Special thanks to Bradley J. Snyder <snyder.bradleyj@gmail.com>

*/

#include "ros/ros.h"

#include "cmath"

class PID {

public:

 // Define all varibles for linear

 float KP_X;

 float KD_X;

 float KI_X;

 float dt_X;

 float max_X;

 float min_X;

 float error_X;

 float integral_X;

 float derivative_X;

 float previous_error_X;

 // Define all varibles for angular

 float KP_Z;

 float KD_Z;

 float KI_Z;

 float dt_Z;

 float max_Z;

 float min_Z;

EEL 4911C/EML 4552

 Test Readiness Review

A-5 | P a g e

 float error_Z;

 float integral_Z;

 float derivative_Z;

 float previous_error_Z;

 // The PID function prototype which allows the transfer of values from the main exe for the linear

control

 void valueslinear(float KP_X, float KI_X, float KD_X, float dt_X, float max_X, float min_X);

 // The PID function prototype which allows the transfer of values from the main exe for the angular

control

 void valuesangular(float KP_Z, float KI_Z, float KD_Z, float dt_Z, float max_Z, float min_Z);

 // Defines the control loop function feeds in setpoint variable and process variable

 float controllinear(float SP_X, float PV_X, float prev_err_x);

 // Defines the control loop function feeds in setpoint variable and process variable

 float controlangular(float SP_Z, float PV_Z, float prev_err_z);

 // Define an error return for the derivative path

 float feedbackerror(float pre_x_er);

};

// The PID function definition

void PID::valueslinear(float gk, float gi, float gd, float delt, float h, float l){

// Delete records of the past and clear old errors

previous_error_X = 0.0;

integral_X = 0.0;

// Set variables equal to variables fed in from the main.

KP_X = gk;

KI_X = gi;

KD_X = gd;

dt_X = delt;

max_X = h;

min_X = l;

}

EEL 4911C/EML 4552

 Test Readiness Review

A-6 | P a g e

// The PID function definition

void PID::valuesangular(float gk, float gi, float gd, float delt, float h, float l){

// Delete records of the past and clear old errors

previous_error_Z = 0.0;

integral_Z = 0.0;

// Set variables equal to to variables fed in from the main.

KP_Z = gk;

KI_Z = gi;

KD_Z = gd;

dt_Z = delt;

max_Z = h;

min_Z = l;

}

float feedbackerror(float pre_x_er){

}

float PID::controllinear(float SP_X, float PV_X, float prev_err_x){

 // Define the loop variables used for processing

 float proportional_output;

 float integral_output;

 float derivative_output;

 //Redefine total output at 0

 float total_output;

 //ROS_INFO("The derivative gain: ([%f])", KD_X);

 // Define the error between the setpoint and the process variable

 error_X = (SP_X - PV_X);

 // Multiply by the proportion amount and define the output

 proportional_output = (KP_X * error_X);

 // Define the integrator summer

 integral_X += (error_X * dt_X);

 // Define the integrator output

 integral_output = (KI_X * integral_X);

EEL 4911C/EML 4552

 Test Readiness Review

A-7 | P a g e

 // Define the differentiator

 derivative_X = (error_X - prev_err_x) / dt_X;

 // Define the differential output

 derivative_output = (KD_X * derivative_X);

 // Define the total output

 total_output = proportional_output + integral_output + derivative_output;

 return total_output;

}

float PID::controlangular(float SP_Z, float PV_Z, float prev_err_z){

 // Define the loop variables used for processing

 float proportional_output = 0.0;

 float integral_output = 0.0;

 float derivative_output = 0.0;

 float integral_Z = 0.0;

 float derivative_Z =0.0;

 // Redefine output as 0

 float total_output = 0.0;

 // Define the error between the setpoint and the process variable

 error_Z = (SP_Z - PV_Z);

 // Multiply by the proportion amount and define the output

 proportional_output = (KP_Z * error_Z);

 // Define the integrator summer

 integral_Z += (error_Z * dt_Z);

 // Define the integrator output

 integral_output = (KI_Z * integral_Z);

 // Define the differentiator

 derivative_Z = (error_Z - prev_err_z) / dt_Z;

 // Define the differential output

 derivative_output = (KD_Z * derivative_Z);

EEL 4911C/EML 4552

 Test Readiness Review

A-8 | P a g e

 // Define the total output

 total_output = proportional_output + integral_output + derivative_output;

 //Save error record

 previous_error_Z = error_Z;

 return total_output;

}

The Waypoint Solver Algorithm

/*****************************

 * 2020 by Mark Hartzog *

 * and Michael Kirke *

 * markthartzog@gmail.com *

 * kirkeml1997@gmail.com *

 * *

 *****************************/

#include "ros/ros.h"

#include "ros/time.h"

#include "std_msgs/String.h"

#include "std_msgs/String.h"

#include "geometry_msgs/Pose.h"

#include "geometry_msgs/Twist.h"

#include <costmap_converter/ObstacleArrayMsg.h>

#include <move_base_msgs/MoveBaseAction.h>

#include <actionlib/client/simple_action_client.h>

#include <iostream>

#include <array>

#include <cmath>

#include <math.h>

// Define global variables

bool first_bouy_reached = false;

bool second_waypoint_reached = false;

float PI = 3.14159265;

bool detection = false;

class Task{

EEL 4911C/EML 4552

 Test Readiness Review

A-9 | P a g e

 public:

 Task get;

 void vectormath(float ly, float ry, float lx, float rx, float scale, float &wpx, float &wpy){

 float u_y = ly - ry;

 float u_x = lx - rx;

 ROS_INFO("Vector component for x: ([%lf])", u_x);

 ROS_INFO("Vector component for y: ([%lf])", u_y);

 // Call the normalize method

 float normalized_u_x = (u_x / (sqrt((pow(u_x, 2.0)) + (pow(u_y, 2.0)))));

 float normalized_u_y = (u_y / (sqrt((pow(u_x, 2.0)) + (pow(u_y, 2.0)))));

 ROS_INFO("The normalized vector component for x: ([%lf])", normalized_u_x);

 ROS_INFO("The normalized vector component for y: ([%lf])", normalized_u_y);

 float angle_between_buoys = (atan2(u_y, u_x));

 float magnitude_u = sqrt(pow(u_x, 2.0) + pow(u_y, 2.0));

 // Perform the 90 deg rotation

 float sx = 0.0;

 float sy = 0.0;

 sx = normalized_u_x;

 sy = normalized_u_y;

 normalized_u_x = sy;

 normalized_u_y = -1 * sx;

 //Scale up the vector

 wpx = normalized_u_x * scale;

 wpy = normalized_u_y * scale;

 ROS_INFO("The scaled rotated vector component for x: ([%lf])", wpx);

 ROS_INFO("The scaled rotated vector component for y: ([%lf])", wpy);

 }

 bool navgoal(float x, float y){

 bool flag = false;

 typedef actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction> MoveBaseClient;

EEL 4911C/EML 4552

 Test Readiness Review

A-10 | P a g e

 // Tell the action client that we want to spin a thread by default

 MoveBaseClient ac("move_base", true);

 // Wait for the action server to come up

 while(!ac.waitForServer(ros::Duration(5.0))){

 ROS_INFO("Waiting for the move_base action server to come up");

 }

 move_base_msgs::MoveBaseGoal goal;

 ROS_INFO("Setting x Waypoint to: ([%lf])", x);

 ROS_INFO("Setting y Waypoint to: ([%lf])", y);

 // Send a goal to the robot to move towards the first set of buoys

 goal.target_pose.header.frame_id = "map";

 goal.target_pose.header.stamp = ros::Time::now();

 goal.target_pose.pose.position.x = x;

 goal.target_pose.pose.position.y = y;

 //Need to fix this to be a dynamic quaternion. Not hardcoded to 1.0.

 //geometry_msgs::Pose orient;

 goal.target_pose.pose.orientation.w = 1.0;

 ROS_INFO("Sending goal");

 ac.sendGoal(goal);

 ac.waitForResult();

 if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED){

 ROS_INFO("The first set of bouys were reached");

 flag = true;

 //ros::shutdown();

 }

 else{

 ROS_INFO("The rover failed to move for some reason");

 ros::shutdown();

 }

EEL 4911C/EML 4552

 Test Readiness Review

A-11 | P a g e

 }

}

class Buoy{

 Buoy buoyLeft;

 Buoy buoyRight;

 public:

 float point1_x;

 float point2_x;

 float point3_x;

 float point1_y;

 float point2_y;

 float point3_y;

 float angle;

 float average_x(){

 float calcX = (point1_x + point2_x + point3_x) / 3;

 //ROS_INFO("The x position: [%lf]", calcX);

 return calcX;

 }

 float average_y(){

 float calcY = (point1_y + point2_y + point3_y) / 3;

 //ROS_INFO("The y position: [%lf]", calcY);

 return calcY;

 }

 float anglefinder(float y, float x){

 float angle = (atan2(y, x));

 return angle;

 }

 float midpoint_locator(float p1, float p2){

 float midpoint = ((p1 + p2) / 2);

 return midpoint;

 }

};

EEL 4911C/EML 4552

 Test Readiness Review

A-12 | P a g e

// Defines the position callpack function

void positionCallback(const costmap_converter::ObstacleArrayMsg pos){

 buoyLeft.point1_x = pos.obstacles[0].polygon.points[0].x;

 //ROS_INFO("The x points: [%lf]", buoyLeft.point1_x);

 buoyLeft.point2_x = pos.obstacles[0].polygon.points[1].x;

 buoyLeft.point3_x = pos.obstacles[0].polygon.points[2].x;

 buoyLeft.point1_y = pos.obstacles[0].polygon.points[0].y;

 buoyLeft.point2_y = pos.obstacles[0].polygon.points[1].y;

 buoyLeft.point3_y = pos.obstacles[0].polygon.points[2].y;

 buoyRight.point1_x = pos.obstacles[1].polygon.points[0].x;

 //ROS_INFO("The x points: [%lf]", buoyRight.point1_x);

 buoyRight.point2_x = pos.obstacles[1].polygon.points[1].x;

 buoyRight.point3_x = pos.obstacles[1].polygon.points[2].x;

 buoyRight.point1_y = pos.obstacles[1].polygon.points[0].y;

 //ROS_INFO("The y points: [%lf]", buoyRight.point1_y);

 buoyRight.point2_y = pos.obstacles[1].polygon.points[1].y;

 buoyRight.point3_y = pos.obstacles[1].polygon.points[2].y;

 if ((buoyRight.point1_x != 0) || (buoyRight.point2_x != 0) || (buoyRight.point3_x != 0) ||

(buoyRight.point1_y != 0) || (buoyRight.point2_y != 0) || (buoyRight.point3_y != 0)){

 detection = true;

 }

 if ((buoyLeft.point1_x != 0) || (buoyLeft.point2_x != 0) || (buoyLeft.point3_x != 0) ||

(buoyLeft.point1_y != 0) || (buoyLeft.point2_y != 0) || (buoyLeft.point3_y != 0)){

 detection = true;

 }

}

int main(int argc, char **argv){

 ros::init(argc, argv, "straight_line_task");

 // Declares and defines node object

 ros::NodeHandle nh;

 // Subscribes to the the obstacle detection package to gather position data

 ros::Subscriber sub = nh.subscribe("/costmap_converter/costmap_obstacles", 10000, positionCallback);

 while (ros::ok()) {

EEL 4911C/EML 4552

 Test Readiness Review

A-13 | P a g e

 ros::spinOnce();

 // Calculates midpoint between the two.

 if (detection == true){

 if(first_bouy_reached == false){

 float midpoint_x = buoyRight.midpoint_locator(buoyLeft.average_x(), buoyRight.average_x());

 float midpoint_y = buoyRight.midpoint_locator(buoyLeft.average_y(), buoyRight.average_y());

 first_bouy_reached = get.navgoal(midpoint_x, midpoint_y);

 }

 }

 // Define the straight line action

 /*if(first_bouy_reached == true){

 typedef actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction> MoveBaseClient;

 //tell the action client that we want to spin a thread by default

 MoveBaseClient ac("move_base", true);

 //wait for the action server to come up

 while(!ac.waitForServer(ros::Duration(5.0))){

 ROS_INFO("Waiting for the move_base action server to come up");

 }

 move_base_msgs::MoveBaseGoal goal;

 float px = key.pointpublisher_x();

 float py = key.pointpublisher_y();

 ROS_INFO("Setting the next x Waypoint to: ([%lf])", key.average_x());

 ROS_INFO("Setting the next y Waypoint to: ([%lf])", py);

 //we'll send a goal to the robot to move towards the first set of buoys

 goal.target_pose.header.frame_id = "map";

 goal.target_pose.header.stamp = ros::Time::now();

 goal.target_pose.pose.position.x = px;

 goal.target_pose.pose.position.y = py;

 //Need to fix this to be a dynamic quaternion. Not hardcoded to 1.0.

 //geometry_msgs::Pose orient;

 goal.target_pose.pose.orientation.w = 1.0;

 ROS_INFO("Sending goal");

 ac.sendGoal(goal);

 ac.waitForResult();

 if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED){

 ROS_INFO("The first set of buoys were reached");

 second_waypoint_reached = true;

EEL 4911C/EML 4552

 Test Readiness Review

A-14 | P a g e

 //ros::shutdown();

 }

 else{

 ROS_INFO("The rover failed to move for some reason");

 //ros::shutdown();

 }

 } */

 }

 ROS_INFO("I REACHED THE END OF THE NODE");

return 0;

}

Arduino Motor Mixing Code and Visual Feedback

//*********************************//

// Brandon Bascetta <brandonbascetta@gmail.com>

// Toni Weaver <tfs32413@gmail.com>

//*********************************//

//Include Libraries

#include "ros.h"

#include "std_msgs/Int16.h"

#include "Servo.h"

#include "FastLED.h"

//Function Prototypes

//Autonomous control

void cmd_control(int duty_l, int duty_r);

//Manual RC

void esc_control_manual();

//Read in rc input

void rc_read_in();

//Light Control

void lightboi(int light_mode);

EEL 4911C/EML 4552

 Test Readiness Review

A-15 | P a g e

//Define pins and such

#define CH1 3

#define CH2 4

#define CH5 5

#define CH6 6

#define CH8 7

#define ESCL 10

#define ESCR 11

#define LED_PIN 8

#define NUM_LEDS 256

//Led panel control object

CRGB leds[NUM_LEDS];

//Servo objects for esc writing

Servo escl;

Servo escr;

//ros node handler

ros::NodeHandle nh;

//Some global variables

int left_duty = 0, right_duty = 0;

unsigned long ch1 = 0;

unsigned long ch2 = 0;

unsigned long ch5 = 0;

unsigned long ch6 = 0;

unsigned long ch8 = 0;

//mode for lights

int mode = 1;

//1 = manual

//2 = autonomous

//3 = kill

//Toni's variables

//Variables for the code

long thrusterL = 0;

long thrusterR = 0;

//linear value x

int linx = 0;

EEL 4911C/EML 4552

 Test Readiness Review

A-16 | P a g e

//angular value w

int omega = 0;

//Velocity map values

int minV = -10;

int maxV = 10;

//angular

int minA = -10;

int maxA = 10;

//These values represent the output velocities of the thrusters

int escMin = 1100;

int escMed = 1500;

int escMax = 1900;

long rcescL = 0;

long rcescR = 0;

//

bool manual = false;

bool lockEngaged = true;

bool horn = false;

//These values reflect general values of the rc transmitter may not be exact numbers

int rcMed = 1500;

int rcLow = 980;

int rcHigh = 2000;

//Calback Functions

void duty_input_left(const std_msgs::Int16& vall)

{

 left_duty = vall.data;

}

void duty_input_right(const std_msgs::Int16& valr)

{

 right_duty = valr.data;

}

//Setting up ros subscribers

ros::Subscriber<std_msgs::Int16> sub1("drive_cmd_left" , duty_input_left);

ros::Subscriber<std_msgs::Int16> sub2("drive_cmd_right" , duty_input_right);

EEL 4911C/EML 4552

 Test Readiness Review

A-17 | P a g e

void setup() {

 //Initialize Pin I/O's

 FastLED.addLeds<WS2812B, LED_PIN, GRB>(leds, NUM_LEDS);

 pinMode(CH1, INPUT);

 pinMode(CH2, INPUT);

 pinMode(CH5, INPUT);

 pinMode(CH6, INPUT);

 pinMode(CH8, INPUT);

 //initialize node and topic subscriptions

 nh.initNode();

 nh.subscribe(sub1);

 nh.subscribe(sub2);

 //default esc signal to 1500 ms

 left_duty = 1500;

 right_duty = 1500;

 //Startup for lights

 for (int i = 0; i < NUM_LEDS; i++) {

 leds[i] = CRGB(0, 10, 10);

 FastLED.show();

 }

 for (int i = 0; i < NUM_LEDS; i++) {

 leds[i] = CRGB(10, 10, 0);

 FastLED.show();

 }

 for (int i = 0; i < NUM_LEDS; i++) {

 leds[i] = CRGB(10, 0, 0);

 FastLED.show();

 }

 //Attach onjecy to esc pin and set min and max output

 escl.attach(ESCL, 1100, 1900);

 escr.attach(ESCR, 1100, 1900);

}

void loop() {

 //check callbacks

EEL 4911C/EML 4552

 Test Readiness Review

A-18 | P a g e

 nh.spinOnce();

 //check rc

 rc_read_in();

 if (lockEngaged == false) {

 //for autonomous control

 if (manual == false) {

 nh.loginfo("Autonomous!");

 cmd_control(left_duty, right_duty);

 }

 //for manual mode

 if (manual == true) {

 nh.loginfo("Manual!");

 esc_control_manual();

 }

 }

 lightboi(mode);

}

void cmd_control(int duty_l, int duty_r) {

 //write esc commands from node

 escl.writeMicroseconds(duty_l);

 escr.writeMicroseconds(duty_r);

}

void rc_read_in() {

 ch1 = pulseIn(CH1, HIGH);

 ch2 = pulseIn(CH2, HIGH);

 ch5 = pulseIn(CH5, HIGH);

 ch6 = pulseIn(CH6, HIGH);

EEL 4911C/EML 4552

 Test Readiness Review

A-19 | P a g e

 ch8 = pulseIn(CH8, HIGH);

 if (ch8 < 1500) {

 horn = true;

 }

 else {

 horn = false;

 }

 if (ch5 > 1500 || ch5 < 900)

 {

 lockEngaged = true;

 //nh.loginfo("Lock Engaged!");

 mode = 3;

 escl.writeMicroseconds(1500);

 escr.writeMicroseconds(1500);

 nh.loginfo("Killed!!");

 }

 else

 {

 lockEngaged = false;

 nh.loginfo("Lock Disbaled!");

 //Manual/auto switch

 if (ch6 > 1500)

 {

 manual = true;

 mode = 1;

 }

 else

 {

 manual = false;

 mode = 2;

 }

 }

}

void esc_control_manual()

{

 //input from ch1 for linear velocity and ch2 for angular velocity

 linx = map(ch1, rcLow, rcHigh, minV, maxV);

EEL 4911C/EML 4552

 Test Readiness Review

A-20 | P a g e

 omega = map(ch2, rcLow, rcHigh, minA, maxA);

 //convert to driving each motor

 thrusterL = linx - omega;

 thrusterR = (linx + omega) * 0.75;

 //convert to pwm for esc

 rcescL = map(thrusterL, minV, maxV, escMin, escMax);

 rcescR = map(thrusterR, minV, maxV, escMin, escMax);

 //send command to esc

 escl.writeMicroseconds(rcescL);

 escr.writeMicroseconds(rcescR);

}

void lightboi(int light_mode) {

 //Manual

 if (light_mode == 1) {

 for (int i = 0; i < NUM_LEDS; i++) {

 leds[i] = CRGB(10, 10, 0);

 }

 }

 //Autonomous

 if (light_mode == 2) {

 for (int i = 0; i < NUM_LEDS; i++) {

 leds[i] = CRGB(0, 10, 10);

 }

 }

 //Killed

 if (light_mode == 3) {

 for (int i = 0; i < NUM_LEDS; i++) {

EEL 4911C/EML 4552

 Test Readiness Review

A-21 | P a g e

 leds[i] = CRGB(10, 0, 0);

 }

 }

 FastLED.show();

}

References

Figures provided by the references below:

Mistry, Siddharth, et al. “Design of HMI Based on PID Control of Temperature.” Research Gate, May

2017,

www.researchgate.net/publication/316709017_Design_of_HMI_Based_on_PID_Control_of_Temp

erature.

Pebrianti, Dwi. “Exploration of Unknown Environment with Ackerman Mobile Robot Using Robot

Operating System (ROS).” Research Gate, Dec. 2015,

www.researchgate.net/publication/289882516_Exploration_of_unknown_environment_with_Acke

rman_mobile_robot_using_robot_operating_system_ROS/figures?lo=1.

